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Abstract— The aim of this paper is to develop the 

dynamical and stability analysis of an inclined beam 

subjected to a moving concentrated load. The problem is 

solved for using the method of Laplace transformation 

for an initial-boundary-value problem, such that an 

integro-differential solution is obtained and used to 

simply deal with the condition of singularity by the load 

functional. The stability of general motion of the elastic 

system is determined by a direct variational approach. 

The result derived showed good agreement with that 

reported in literature. 
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I. INTRODUCTION 

A large margin of works in literatures focuses on moving 

loads on horizontal bridges and foundations [1-10], to 

mention a few. It may be arguably stated that the intuition 

and perspective of moving load models on inclined 

structures elucidated in recent years assume to be a matter 

of concern in structural dynamics and stability. The growing 

complexity of mounting infrastructures, such as rails, 

bridges, and pipelines on uneven terrain to be subjected to 

moving load makes this research domain highly valid for 

engineers and mathematicians that are interested in 

formulating computational structural and load model and 

developing effective solutions. A good report on the 

application of moving load on inclined structures is 

presented in [11], and hence, research becomes a basic 

modality to idealize our understanding on the performance 

mechanism of the system. Wu [12] presented the dynamic 

response of an inclined beam with attention on centrifugal 

and coriolis fo. Mamandi and Kargarnovin [13] thereafter 

presented a nonlinear dynamic response of a beam given the 

effect of transverse shear deformation of the beam. Yang 

and Wang [14] considered the dynamic and stability of the 

inclined beam in the context of an axially compressed load 

using the finite element method. In [15], they further 

provided insights onto the axial load effect on the beam 

stiffness based on a semi-analytical solution. 

 

This paper tends to profer a simplistic integro-differential 

approach in [3] and using a direct variation method to solve 

for the inclined Euler beam. The approach takes advantage 

of the so-called extended Galerkin’s method to highlight the 

intrinsic property of the inclined beam while applying the 

transform method to reduce the physical system onto a 

green’s functional in the context of the moving concentrated 

load components. 

 

II. THEORETICAL FORMULATION 

The following differential equation, and the initial and 

boundary conditions govern the flexural motion of the 

inclined beam [14,15] 
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The inclined beam having a moving concentrated load, P0is 

presented in Figure 1, m denotes the mass per unit length, E 

the Young’s modulus, I the second moment of area, c the 

damping coefficient, w is the transverse deflection with 

respect to the inclined beam, the loads: Pt and Pa are the 

transverse and axial load component along the beam.  

 

 
Figure 1. Components of moving load on inclined beam. 
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Adopted from [14] 

 

By Laplace transformation 

0 0

( , ) ,   ( , ) st stw e w x t dt K e K x t dt

 

     (2.3) 

we get:  
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observing that 2 i ic   represent the i
th

 modal damping 

ratio of the vibrating system 
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In order to obtain w from (2.5), let the following series 

expansions be used 
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Eigenvalues and Eigenvectors – 

The coordinate functions are chosen as the eigenfunctions of 

the self-adjoint auxiliary problem as 
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It follows simply from (2.7-2.8) that the function in 
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The function  jY x thus satisfy the boundary conditions. 

The solution maybe expressed in the so-called extended 

Galerkin’s approach, and observing orthogonality condition 

so that we arrive at 
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noting that  
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put: 
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The eigenvalues for the problem may be solved for if we 

attempt to find the determinant of  jk  

 

det 0jk   (2.13) 

By back substitution of eigenvalues in (2.10), the 

coefficients are obtained. We see from (2.7-2.8) that the 

coordinate functions satisfy the following orthonormality 

conditions; assuming that the weight of the moving mass is 

far negligible when compared to that of the beam 
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One must realize that the nature of operator A in (2.6) may 

result to an expression for a complicated integro-differential 

equation. Therefore, in order to keep things simple here we 

set (2.6) in (2.5) as 
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Taking note of (2.7) and (2.15) 
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From (2.6a)   
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but from (2.6b), it is easily deduced that 
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By inversion, the Laplacian transform the solution becomes 
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The solution turns actual if the convergence of the series 

involved in (2.20) can be proved. An integration by parts 

with respect to t is carried out once on the right hand side, 

and the following is obtained: 
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Now, let the third term on the right side of (2.21) be 

investigated on the successively real eigenvalues 
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Assuming that eigenvalues of the auxiliary problem (2.7) 

are uniformly bounded in 0 ≤ x ≤ l 
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In the case of the last term on the right side in (2.20); since 

w x, 0 = 0  is assumed to satisfy the boundary conditions 

in (2.2), one can expand in terms of the eigenfunctions 

according to Hilbert's expansion theorem as 
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In reference to a control functional, T(x,t) in (2.24) is 

obviously bounded as long as Pa< Pa,crit, i.e., as long as the 

eigenvalues are real quantities. Upon introducing the forcing 

function as   
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the magnitude of flexural deflection due to lateral force 

component can then be estimated as follows: 
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where the Green’s function of the integro-differential 

problem is taken as 
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The final stability and control function upon introducing the 

axial force component, Pa becomes 
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Stability Condition– 

The stability of the inclined beam with respect to the 

damping ratio is studied as analogous to (2.12) and by a 

direct variational technique as  
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such that by simultaneously solving for (2.29) noting (2.30), 

a solution of critical loads Pa,crit are obtained, evident by a 

set of positive eigenvalues. 

 

III. RESULTS AND DISCUSSION 

The following properties are adopted example of a bridge 

model in [14]: a simply-supported beam of span, L = 25m, 

modulus of elasticity, E = 2.92GPa, moment of inertia, I = 

2.88m
4
, mass per unit length, µ = 2351 kg/m. The moving 

load, P0 = 50 kN and the speed of the moving load, v = 

100km/hr are chosen to be similar to the above reference. 

Solving (2.13) for j,k ϵ {1,2,…} and applying conditions. 
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which showed good agreement with that reported in [14]. 

The corresponding series of modal vectors can then be 

represented in the form 
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where t is period of time at which a load P0 travels within 

the beam. 

Figure 2 analyses the dynamic response of the beam at 

different load position from the rational of lower bound of 

eigenvalue for the vibrating system. In (2a-b), the 

magnitude of deformation, velocity, and acceleration are in 

good agreement to that obtainable in [14]. Contrary to the 

analogy stipulated in [14] where so-called ‘small’ 

oscillations of vibration exist in the velocity and 

acceleration of the physical system after five numbers of 

vibration mode; the evidence of convergence in our case is 

domicile in just two eigenfunctions (vibration modes). 

Figure 3 analyses the dynamic response of the beam at 

different inclination for undamped and damped (ξ = 0.01) 

system. The analyses reveal the displacement effect of the 

inclined beam as it transit in magnitude of force from the 

lateral component to the axial component of the 

concentrated load. The results are better described in table 1 

and in close agreement to that reported in [14], for a moving 

force P0 = 20.18MN (i.e. P = 1.5 in dimensionless form) at 

motion dependent location ϕ = vt/L. Table 1 further assert 

the influence of velocity parameter on the displacement 

magnitude of the beam under different condition of 

inclination. The displacement due to rise in velocity are seen 

to be far lower than that liable to influence the stability 

condition of the beam, contrary to the influence by axial 

load component. 

Table 2 show the minimum critical buckling load obtainable 

at different angle of beam inclination, and the 

accompanying set of positive eigenvalues as long as Pa< 

Pa,crit, with respect to a damping ratio. The stability for the 

dynamic system is compared to that obtainable by trial 

method in [14] by solving (2.29). 

It is interesting to observe that the minimum critical loads 

liable to trigger buckling at any inclination in this approach 

are reasonably below the critical loads discussed in [14]. 

The concept of direct variational approach provides a rather 

exact load capable of immediate distortion of the dynamic 

system compared to the reference herewith to test the 

stability. The result agreed that as the inclination reduces, a 

higher load magnitude will be required to reach buckling in 

the system. It also revealed that the major stability problem 

of the dynamic system is conditioned by the magnitude of 

the axial force component. 
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Figure 2. Dynamic response of horizontal beam at load position ϕ = 0, 0.25, 0.5, 0.75 and v = 27.78 m/s (100 km/hr) 

Figure 3. Dynamic response of undamped(left) and damped(right) beam at v = 33.8327 m/s 

 

Table-1. Maximum deflection  -2

maxw in 10 of inclined beam with different speeds 

Beam 

Inclin-

ation 

v = 3.3833 [S=0.002] v = 5.3494 [S=0.005] v = 10.6988 [S=0.02] v = 33.8327 [S=0. 2] 

Undamped Damped Undamped Damped Undamped Damped Undamped Damped 

0
o 

3.19 2.94[3.14] 3.23 3.35 3.35 3.27[3.18] 4.01 3.63[3.37] 

15
o 

3.08 2.84[3.09] 3.12 3.24 3.24 3.16[3.13] 3.88 3.50[3.32] 

30
o
 2.76    2.55[2.82]         2.80         2.90        2.90    2 .83[2.86]        3.48    3.14[3.03] 

45
o
 2.26 2.08[2.34] 2.29 2.37 2.37 2.31[2.37] 2.84 2.57[2.51] 

60
o
 1.59 1.47[1.68] 1.62 1.68 1.68 1.63[1.69] 2.01 1.81[1.80] 

75
o
 0.825 0.761[0.876] 0.837 0.868 0.868 0.846[0.883] 1.04 0.939[0.938] 
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The values in bracket is that reported in [14]. 

 

where, 
2 2v

S
EI

l
  (3.1) 

and, 

  2

,

,

sina crit

a crit

P
P

E

l

I


  (3.2) 

 

Table-2. Minimum buckling load at different angles of 

inclination 

 

 

 

 

 

 

 

 

 

The values in bracket is that reported in [14]. 

 

IV. CONCLUSION 

A close form solution for the moving load of transverse and 

axial components is dealt with. The resolve by integro-

differential approach presented a rather simplistic view in 

understanding the performance mechanism of the system 

when compared to other reports. Some findings were 

highlighted with the aid of examples. The solutions 

following showed that the magnitude of deflection in beam 

reduces as the angle of beam inclination increase. The drop 

in deflection of the beam results in a corresponding decrease 

in the buckling load required to provide stability of the 

beam. 
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  
crP   (ξ = 0)   (ξ = 0.02) 

0
o 

∞ 

0, 

19.7392 

0.0066, 

19.7326, 

19.7458 

30
o 
19.7392 

60
o
 11.3964 

80
o
 10.0219 

89
o
 9.8711 [10.45] 

90
o
 9.8696 


